
Understanding Yioop



UI and Search 

● Simplified Url & favicon
● Word Cloud
● Cached Pages
● Search result similar to current doc (Search on top 5 relevant word)
● Incoming links 
● Search score
● Docs with same IP address



● Notice extracted title, summary, and links (SEO view of page)



Search Operators

● #num# : Used to show multiple query results. ‘num‘ represents number of 
search result for individual query

● query 1| query 2 : to search query or query 2
● “match query”: exact match search
● -notThisQuery: to search documents not containing ‘notThisQuery’
● related:url , cache:url , link:url , ip:ip_address: equivalent to clicking respective 

links of url/ip_address



Classifiers

● Sometimes text search is not enough to search document. Additional 
information about the pages can used to search.

● Classifiers adds label to meta words of crawled pages
● Classifiers can be created/trained manually by using ‘edit’ option of classifier



Page Indexing and search

● Byte Range to Download: number of bytes to download during crawl
● Whole Page Cache: downloaded bytes are stored in archives
● Summarizers: summarizer to use to summarize the text (Basic, Centroid, Centroid 

Weighted, and Graph Based)
● Basic summarizer uses tag scraping and distance from top
● Centroid methods splits document into sentences and calculates average sentences. 

Use this to determine which sentence to add to add to the summary
● Graph based uses PageRank style approach where weighted adjacency matrix is 

between sentences is calculated using a notion of similarity between two sentences.



Page Indexing and search

● Max Page Summary Length: number of bytes of summary which is sent to 
the queue server

● Suffix Phrases: Whether to extract suffix phrases from document summaries 
at crawl time and whether to use suffix phrases at search time.

● Allow Page Recrawl After: Number of days Yioop keep tracks of 
downloaded URL. After these days, bloom filters are reset to allow recrawling

● Page File Types: types of pages to crawl
● Classifiers and Rankers: Classifiers and Rankers to use to classify and rank 

pages



Page Indexing and search

● Control search result elements displayed attributes
● Give weightage to search ranking factor - title, description, and links
● Yioop searches docs till it find certain number of qualifying docs
● Sorts the qualifying docs and return top 10 results
● In multi-queue-server setting, query is sent simultaneously to queue servers 

and results are aggregated
● Name server requests alpha * (minimum result group)/(number of queue 

server) docs. Server Alpha controls the number alpha



Search Ranking Mechanism

● Without operators, Yioop uses conjunctive queries i.e. tries to find doc with all 
search terms

● Search score is based on 3 main scores - 
○ Doc Rank (DR)
○ Relevance (Rel)
○ Proximity (Prox)

● Only scans n number of documents till timeout
● This is based on assumption first n doc contain top 10 results.
● Assumption is true as Yioop indexes docs based on doc rank. Rel and Prox 

do not affect results drastically



Crawl time ranking 

● A Name server, which acts as an overall coordinator for the crawl, and which 
is responsible for starting and stopping the crawl.

● One or more Queue Servers, each of which maintain a priority queue of what 
to download next.

● One or more Fetchers, which actually download pages, and do initial page 
processing.

● Hash of hostname of each seed url is computed and assigned to queue 
server. All urls having same hostname will be assigned to same server

● Fetchers get active crawl info of queue server from NameServer. Fetcher 
downloads pages from queued urls



Fetchers and their Effect on Search Ranking

● Downloads batch of 100 pages at a time
● Downloads only PAGE_RANGE_REQUEST bytes by sending in request header
● After batch is downloaded performs -

○ Choose Page processor based on mime type
○ Extract summary using page processor
○ Apply indexing plugin 
○ Run classifiers
○ deduplication by hashing after removing tags and non words
○ Prune number of links extracted to max limit
○ User defined rule on extracted summary
○ Keep summaries and complete page (if configured) in memory until downloaded complete schedule or 

SEEN_URLS_BEFORE_UPDATE_SCHEDULER many have been downloaded. At this point, 
summaries and caches are shipped off to the appropriate queue server in a process we'll describe 
later



Indexing

● Indexer: 
○ Responsible for indexing
○ Adds Index Data file information to the active partition and periodically launches a 

DictionaryUpdater sub-sub process.
● DictionaryUpdater: 

○ When the active partition get full, a new partition is started
○ Builds an inverted index for the old active partition and adds the result to the overall index



IndexDocumentBundle

● Documents: Sequence of file pairs called partitions: 
partition_SOME_INTEGER.ix, partition_SOME_INTEGER.txt.gz Each 
partition typically stores around 100,000 documents on an 8GB RAM machine

● Given partition_SOME_INTEGER.txt.gz file contains a sequence of 
gzip-compressed document summary, gzip-compressed document objects.

● The file partition_SOME_INTEGER.ix contains a sequence of records of the 
format (doc_id, offset in txt.gz file to summary, offset in txt.gz file to document, 
length of document object)

● pdb_parameters.txt which contains information about compression and record 
formats used, the max size in bytes for a partition, the maximum number of 
record for a partition, etc



IndexDocumentBundle

● positions_doc_map: 
● Consists of a sequence of integer numbered folders corresponding to partitions in the 

previously described documents folder
● Each folder except the last folder contains three files: a doc_map file, a positions file, and 

a postings file. The last folder has in addition a last_entries file.
● doc_map file consists of a sequence of tuple pairs doc_id => position_score_list where 

position_score_list is a list of pairs (position, score) . The first such (position, score) is the 
offset to the document in the txt.gz partition file, followed by an overall score for the 
document in the partition.

● (position, score) 's after the first score are position term positions within the 
representative document, scores for the terms from this position and the previous. So a 
second tuple pair (10, 0.5) would indicate term locations 0, 1, 2, ..., 10 should each be 
weighted 0.5 when determining how important a term having one of these location is.

● After these set of pairs the position_score_list has additional pair (0, user_score) for the 
scores of the document with respect to each classifier being used for the crawl.



IndexDocumentBundle

● ‘positions’ is a binary file used to store for each term found amongst a 
partition's worth of documents, the locations of the term within each document 
that it occurred in.

● Such a list is stored using a gamma-code for the first value, followed by a 
Rice-code of a difference list of the remaining values.



IndexDocumentBundle

● The postings file has two similar formats, one for the partition new documents 
are being added to and for other partition.

● For the new document partition, it contains an inverted index for that partition.
● Inverted index: A sorted-and-grouped-by-term sequence of tuple pairs. 

(term_id => posting_list_for_term) , where posting_list_for_term , consists of, 
for each document the term appears in, a tuple (index of document in 
doc_map file, frequency of term in document, offset of terms position list in 
positions file, length of positions file entry).

● For all other partitions, the format is almost the same, execpt term_id's are 
not in the file as they are already stored in the B+-tree dictionary entry.



IndexDocumentBundle

● last_entries file is used for record keeping for each term to be able to output 
postings correctly. For a given term it consists of a triple (term_id, 
last_doc_index, last_offset, num_occurrences)



IndexDocumentBundle

● Dictionary: 
○ Implemented B+ Tree using folder structure. Folder represents internal node. file represents 

leaf node.
○ key-value pair: term_id -> posting_list_for_term
○ term_id -> sorted list of partition info records for term_id. A partition info record is a tuple 

(partition number, number of docs term appeared in for the partition, total number of 
occurrences of term in partition, offset into postings file where postings for partition can be 
found, length of posting data).



IndexDocumentBundle

● next_partition.txt
○ Contains a single integer indicating the next partition that could be added to the dictionary that 

been yet.
● archive_info.txt

○ This file contains information about the creation time of the archive, the crawl parameters used 
to obtain the data stored in the archive, and the archive version format.


